Statistics 3

Exercise 6B

1 The data will be presented as seven frequencies, with a specified total of 50 , so there are six degrees of freedom.

2 From the tables $\chi_{5}^{2}(5 \%)=11.070$
3 a $\chi_{5}^{2}(5 \%)=11.070$
b $\chi_{8}^{2}(1 \%)=20.090$
c $\chi_{10}^{2}(10 \%)=23.209$
$4 \quad \chi_{10}^{2}(5 \%)=18.307$
$5 \quad \chi_{8}^{2}(10 \%)=13.362$
$6 \chi_{8}^{2}(99 \%)=1.646$, so $\mathrm{P}\left(\chi_{8}^{2}>1.646\right)=99 \%$ So $y=1.646$
$7 \chi_{5}^{2}(95 \%)=1.145$, so $\mathrm{P}\left(\chi_{5}^{2}>1.145\right)=95 \%$
So $y=1.145$
8 a $\mathrm{P}(Y<y)=1-\mathrm{P}(Y>y)$
So $\mathrm{P}(Y<y)=0.05 \Rightarrow \mathrm{P}(Y>y)=0.95$
$\chi_{12}^{2}(95 \%)=5.226$, so $\mathrm{P}\left(\chi_{12}^{2}>5.226\right)=95 \%$
$y=5.226$
b $\mathrm{P}(Y<y)=0.95 \Rightarrow \mathrm{P}(Y>y)=0.05$
$\chi_{12}^{2}(5 \%)=21.026$, so $\mathrm{P}\left(\chi_{12}^{2}>21.026\right)=5 \%$ $y=21.026$

